
RM-RL: Role-Model Reinforcement Learning for Precise Robot
Manipulation

Xiangyu Chen, Chuhao Zhou, Yuxi Liu, and Jianfei Yang†

Abstract— Precise robot manipulation is critical for fine-
grained applications such as chemical and biological exper-
iments, where even small errors (e.g., reagent spillage) can
invalidate an entire task. Existing approaches often rely on pre-
collected expert demonstrations and train policies via imitation
learning (IL) or offline reinforcement learning (RL). How-
ever, obtaining high-quality demonstrations for precision tasks
is difficult and time-consuming, while offline RL commonly
suffers from distribution shifts and low data efficiency. We
introduce a Role-Model Reinforcement Learning (RM-RL)
framework that unifies online and offline training in real-
world environments. The key idea is a role-model strategy
that automatically generates labels for online training data
using approximately optimal actions, eliminating the need for
human demonstrations. RM-RL reformulates policy learning
as supervised training, reducing instability from distribution
mismatch and improving efficiency. A hybrid training scheme
further leverages online role-model data for offline reuse,
enhancing data efficiency through repeated sampling. Extensive
experiments show that RM-RL converges faster and more
stably than existing RL methods, yielding significant gains
in real-world manipulation: 53% improvement in translation
accuracy and 20% in rotation accuracy. Finally, we demonstrate
the successful execution of a challenging task, precisely placing a
cell plate onto a shelf, highlighting the framework’s effectiveness
where prior methods fail.

I. INTRODUCTION

Autonomous robotic manipulation has shown promising
results in real-world tasks, such as folding clothes and
performing household manipulations [1]–[3]. Beyond these
general-purpose applications, growing attention has shifted
toward high-precision manipulation, particularly in delicate
biological and chemical experiments [4], [5]. In such do-
mains, success hinges on the robot’s ability to execute actions
with sub-millimeter to millimeter-level accuracy, as even
minor deviations can compromise the entire experiment.

Two primary paradigms have been widely adopted for
robotic policy learning: Imitation Learning (IL) and Rein-
forcement Learning (RL). Imitation Learning (IL) [6], [7]
provides an effective way to acquire policies from expert
demonstrations. However, in high-precision tasks, even hu-
man operators struggle to deliver consistent millimeter-level
accuracy through teleoperation, making the collection of
demonstrations slow and costly. Learning from such limited
data often leads to overfitting to the training distribution and

Xiangyu Chen, Chuhao Zhou, Yuxi Liu, and Jianfei Yang are with the
Multimodal AI and Robotic Systems (MARS) Lab, School of Mechanical
and Aerospace Engineering, Nanyang Technological University, 50 Nanyang
Avenue, Singapore 639798. Email: {xiangyu014, chuhao002,
yuxi002}@e.ntu.edu.sg; jianfei.yang@ntu.edu.sg.

†Corresponding Author.

Fig. 1: The Ufactory X-ARM 6 autonomously executes a pick-and-
place task, transferring a cell plate to the designated shelf. The red
curve illustrates the trajectory of the end-effector.

poor generalization in real-world scenarios. In contrast, Re-
inforcement Learning (RL) enables policies to autonomously
explore and optimize through trial and error, thereby elim-
inating the need for demonstrations. Yet, most RL methods
are developed and validated in simulators [8]–[10], which
fail to capture the subtle but critical errors in fine-grained
real-world manipulation due to the persistent sim-to-real gap.
This motivates our goal: to enable efficient training of robotic
policies with high-precision manipulation skills directly in
the physical world.

However, applying online RL directly in the real world is
far from straightforward. In existing online RL, policies are
typically updated directly from real-world reward signals.
This process is highly data-inefficient, as each interaction
can only be used once, and data collection in the physical
world is inherently slow. Attempts to improve efficiency
with replay buffers [11]–[13] partially mitigate this issue but
introduce a second challenge: distribution shift [14]–[16].
Because stored data is generated by outdated policies, the
mismatch between past experiences and the current policy
often destabilizes optimization and impedes convergence.
These limitations lead us to the central question of this
work: Can we design a real-world RL framework that
achieves both high data efficiency and training efficiency
for precise robotic manipulation?

“When three people walk together, there must be a
role model whom I can learn from; I will select the
good qualities and follow them.”

— Confucius, “The Analects”
To address this question, we draw inspiration from Con-

fucius’ dictum in The Analects, and propose the Role-Model



Reinforcement Learning (RM-RL) framework. RM-RL in-
tegrates online exploration with offline supervised learning
by periodically selecting a role-model action, which is the
highest-reward action observed under similar initial states,
and using it to guide the remaining peer actions. The peer
actions are automatically labeled by reference to the role-
model action, allowing the online samples to be reformulated
into supervised training data. These labeled samples are then
repeatedly reused in offline training, ensuring that valuable
experiences contribute to policy improvement multiple times
rather than only once. This selection-and-labeling process
is performed periodically during online interaction, which
enables the framework to continuously inject stable super-
vised signals into the training loop. As a result, RM-RL
substantially enhances data efficiency and mitigates distri-
bution mismatch [17], [18], ultimately achieving both stable
optimization and robust policy learning for high-precision
robotic manipulation in the real world.

To validate the effectiveness of the RM-RL framework
in real-world applications, we consider a precise manipu-
lation task: placing a cell plate into a designated slot with
millimeter-level accuracy, such as a cell plate shelf, as shown
in Fig. 1. At each iteration, the policy network predicts
actions based on the real-world environmental observation,
which are then transformed to control commands for the
robotic arm to execute. The reward is computed as the
deviation between the executed and target poses and used
to update the policy network via policy gradient. The role-
model samples are simultaneously identified to label online
training data, enabling their reuse during offline training. The
offline training operates in a supervised manner, iteratively
fine-tuning the policy network to improve performance. The
contributions of this paper are summarized as follows:

• We propose a role-model mechanism that, by sampling
under similar initial conditions, identifies approximately
optimal actions to label real-world samples collected dur-
ing online RL training. This labeling process transforms
offline learning into a supervised paradigm, thereby
enhancing the efficiency of real-world RL training.

• We propose a combined online–offline RL framework
in which data are collected during online training and
subsequently labeled through the role-model mechanism.
Within this framework, each sample obtained from on-
line training is reused multiple times in the offline
training stage, thereby enhancing data efficiency.

• The experiment results demonstrate that the proposed
role-model strategy and recipe can improve the sampling
data efficiency, get faster convergence, and achieve a
better success rate in the real-world, precise tasks.

II. RELATED WORKS

A. Reinforcement Learning

Reinforcement learning (RL) aims to train a policy to
make decisions based on the reward generated from the
environment, typically modeled as a Markov decision process
(MDP) [19]. Over the past decade, RL has demonstrated its

power in combination with deep neural networks in multi-
agent systems [20] and robotic areas, such as autonomous
driving and robot locomotion tasks. However, RL still faces
challenges when using real-world data for training [21].

Traditional RL methods can be broadly categorized as
online RL, where the policy model is updated simultaneously
with the environment’s reward during the training process.
Due to the emergence of high-performance simulators, like
Isaaclab [10], Mujoco [9], online RL has demonstrated
strong power in robotic locomotion, with Q value-based
approaches (e.g., Q-learning and DQN [12]), policy gradient
methods [22], and actor-critic frameworks (e.g., A3C [23],
SAC [24]). Despite their success, online approaches often
suffer from high sample complexity and safety concerns,
making their deployment in real-world systems such as
robotics and autonomous driving particularly challenging.

To address the limitations of costly and risky online
interaction, offline RL (also referred to as batch RL) has
gained increasing attention. In offline RL, policies are trained
entirely from previously collected datasets without addi-
tional environment access, allowing the reuse of experiences
from demonstrations, simulators, or operational logs. Recent
advances, including CQL [25], and IQL [26], have made
notable progress toward improving stability and mitigating
the risk of extrapolation errors, showing promising results
in safety-critical domains such as healthcare, recommenda-
tion, and robot manipulation. Specifically, Zhou et al. [27]
leverage an extensive dataset to improve the generalization
capabilities. Nevertheless, offline RL still faces significant
challenges in practice. Widely used offline RL datasets [28]–
[30] are almost collected in simulation environments, where
there exist significant gaps between the real-world settings.
Collecting large-scale and high-quality real-world robotic
datasets [31] remains difficult and resource-intensive, while
the issue of distributional shift persists, as learned policies
may generate out-of-distribution actions unsupported by the
dataset. These limitations continue to hinder the scalability
and reliability of offline RL in real-world applications.

B. Reinforcement Learning for Real-world Robotic Tasks

Reinforcement Learning (RL) has demonstrated remark-
able capabilities in robotic domains such as locomotion,
manipulation, and autonomous navigation. Quadruped and
humanoid robots have successfully employed deep RL to
achieve agile locomotion directly on hardware [32], [33],
while mobile robots have leveraged RL for navigation in un-
structured environments [34], [35]. In manipulation, RL has
enabled large-scale robotic grasping [36]–[38], underscoring
its potential for practical deployment.

Despite these successes, deploying RL in the real world
remains challenging [21] due to issues of sample inefficiency,
safety, and robustness to domain shifts. Collecting large
amounts of on-robot data is expensive and risky, and simu-
lators often fail to capture fine-grained physical properties,
resulting in significant sim-to-real gaps [39], [40]. To address
these challenges, researchers have developed approaches
such as sim-to-real transfer with domain randomization [41],



model-based RL with latent world models for efficient data
usage [42], and offline RL leveraging prior robot datasets
for safe policy training [26]. Moreover, hybrid frameworks
that combine demonstrations with online fine-tuning [43] or
integrate classical controllers with RL [44] further reduce the
interaction burden and improve training stability.

III. METHODOLOGY

A. Problem Definition

As we mentioned in Sec. I, our work addresses the robotic
manipulating task requiring millimeter-level accuracy. The
task involves using the robotic arm’s bio-gripper to pick and
place a cell plate into a designated position of comparable
size. We formalize the task as a standard one-step Markov
Decision Process (MDP) [19], M =

(
S,A, p,R, ρ0, γ

)
.

Specifically, the state S includes the environmental images
I and the corresponding estimated picking poses P e of the
robotic arm. The action A is the set of all candidate pose
adjustments ∆P to P e. For clarity, we denote each pose
adjustment ∆P as an action a ∈ A. The reward function R
provides the real-world reward as the deviation between the
final and target poses. Since the selected task is to pick and
place the cell plate on a planar surface, we only consider
the pose components x, y, and ψ, denoted as P = [x, y, ψ].
Here, x and y represent translations along the x- and y-axes,
and ψ denotes the rotation about the z-axis. Thus, the action
can be simplified to a = [∆x,∆y,∆ψ].

B. Overall Framework

Fig. 2 illustrates the proposed framework of the proposed
Role-Model Reinforcement Learning (RM-RL). The frame-
work adopts the hybrid online-offline training paradigm and
consists of three main components: Online Real-World RL
Training, Role-Model Online Labeling, and Data Replay.
Before training begins, the cell plate is placed at the target
area and its pose is recorded as the target pose P target, which
remains fixed throughout the process. During Online Real-
World RL Training, actions are sampled under similar initial
states in scene i and used to update the policy network πθ
via policy gradient. At step t, the global camera captures a
color image It, from which the estimated cell plate pose
P ei,t is obtained. The pair (Ii,t, P

e
i,t) is then fed into the

policy network to predict an adjustment pose ∆Pi,t, which
corresponds to the action ai,t defined above. The robotic arm
executes the final picking pose, which is defined as:

P picki,t = P ei,t + ai,t. (1)

Once the plate is successfully grasped, the robotic arm
follows a pre-planned trajectory to place it at the center
of the target area. The resulting pose P finali,t is recorded,
and the reward is computed by the reward function R,
based on the deviation between P finalt and P target. This
reward is used to update the policy network with the policy
gradient algorithm [22]. In the Role-Model Online Labeling,
we leverage the proposed role-model strategy to online label
the training data from scene i as Di, incrementally building

a well-labeled dataset D for further offline RL training. The
offline training processes are executed multiple times in the
Role-Model Online Labeling and Data Replay. The details of
the core contributions, role-model online labeling and online-
offline training recipe, are presented in the following section.

C. Role-Model Reinforcement Learning

This part illustrates the Role-Model Reinforcement Learn-
ing (RM-RL) in detail, including the role-model online
labeling and the hybrid online-offline RL training. Role-
model labeling enables self-annotation to improve training
efficiency, while hybrid online–offline RL training empha-
sizes reusing scarce training data to enhance data efficiency.

1) Role-Model Online Labeling: The role-model online
labeling selects the role-model action to label the correspond-
ing samples within each scene in the online training stage.
During the step-by-step online training, we group the steps
with similar initial states Si, their rewards Ri, and actions Ai

to formulate the scene i. The role-model strategy is to select
the action with the best reward as the role-model action a∗i
from Ai, which can be formulated as follows:

a∗i = arg max
ai,k∈Ai

R(ai,k, si,k), (2)

where ai,k and si,k are the action and state in scene i
at step k. Then, we can use the role-model action a∗i as
the approximately optimal action to label the remaining
states in scene i. Since the pose adjustment prediction is
formulated as a discrete probability distribution, the variables
∆x, ∆y, and ∆ψ are restricted to a fixed set of candidate
values. Consequently, the selection of the pose adjustments
can be transformed into a multi-class classification problem,
where predictions of ∆x,∆y, and ∆ψ can be mapped into
corresponding discrete classes, respectively. The indices of
the ∆x,∆y and ∆ψ of the role-model action a∗i are extracted
as Ii = [indx, indy, indψ]. Then, the states are collected in
scene i and labeled with Ii to incrementally build the dataset
D. The dataset collection process can be represented as:

Di = {(si,k), Ii}Nk=1, (3)
D = {D1, . . . ,Di}, (4)

where Di and Ii represent the dataset and the index label
for the i-th scene with similar initial states, N represents the
total number of the state and ski is one state in i-th scene. The
well-labeled dataset D can be regarded as demonstrations for
executing supervised learning to update the policy network.

2) Hybrid Online-Offline RL Training: To enhance train-
ing efficiency, we adopt a hybrid online–offline frame-
work that facilitates the effective reuse of sampled data.
In online training, the robotic arm interacts with the real-
world environment in real-time to explore and update the
policy network πθ, while the offline training further fine-
tunes the policy using role-model–labeled data. We elaborate
the details about online training, offline training, network
architecture, and reward design in the following.

Online Training: The online RL adopts the policy gra-
dient [45] fashion to train the policy network, since other



Role-Model Online Labeling

Role-Model Selection

···

···

𝑎𝑖
∗𝑠𝑖,1

𝑎𝑖
∗𝑠𝑖,𝑀

𝑠𝑖,𝑗 𝑎𝑖
∗

𝑠𝑖,1 𝑎𝑖,1

𝑠𝑖,𝑗 𝑎𝑖,𝑗

𝑠𝑖,𝑀 𝑎𝑖,𝑀

···

···

Role-Model 

Labeling

Training 

Data

Store

𝑥
𝑦
𝜓Localization

∆𝑥
∆𝑦
∆𝜓

𝜃

Sample 𝑘 in Scene 𝑖

Δ𝑃𝑖,𝑘

𝑃𝑖,𝑘

Policy 

Gradient

Real-world 

Reward 

𝑎𝑖,𝑘
···

···
𝑠𝑖,𝑙 𝑎𝑖

∗ 𝑠2,𝑚 𝑎2
∗𝑠2,𝑔 𝑎2

∗

𝑠1,𝑗 𝑎1
∗ 𝑠2,𝑛 𝑎2

∗𝑠1,𝑘 𝑎1
∗

Sample

Data Replay

···

···

Sample

Online Real-world RL Training

Scene 𝑖 New Scene 𝑖 + 1 

𝑠𝑖,𝑘

𝑥𝑡𝑎𝑟𝑔𝑒𝑡

𝑦𝑡𝑎𝑟𝑔𝑒𝑡

𝜓𝑡𝑎𝑟𝑔𝑒𝑡

𝑃𝑡𝑎𝑟𝑔𝑒𝑡

Fig. 2: The framework of the proposed Role-Model Reinforcement Learning (RM-RL). The framework mainly includes three parts: the
Online Real-world RL training, the Role-Model Online Labeling, and the Data Replay. In the online real-world RL part, actions are
sampled to update the policy network using a policy gradient under similar scenes and initial states. In the role-model online labeling part,
the approximately optimal action a∗i is selected as a label for the rest of the states. The labeled data are collected as the sub-dataset Di

to build a dataset D for further training. In the data replay part, actions and states are sampled from the D to update the policy network.

training methods, like Actor-Critic [46], [47], Proximal Pol-
icy Optimization [48], require extensive action samples to
achieve convergence, which is time-consuming in the real
world. Online RL aims to maximize the following objective:

J(θ) = Ea∼πθ

[
R(a)

]
, (5)

where a is the sampled action given policy πθ and R(a)
is the one-step reward of action a. In policy gradient, we
instead minimize the surrogate loss function for training:

L(θ) = −Es,a
[
log πθ(a | s)R(a)

]
. (6)

Offline Training: To enhance the data efficiency and
generalization capability of the policy, we separately perform
offline RL training in the Role-Model Online Labeling and
Data Replay. Both offline RL training adopt the same loss
function, while the distinction lies in the datasets. The
first training is conducted on Di, and the second on D
periodically. After collecting Di, the first offline training
is applied, allowing the policy to learn the approximately
optimal solution in the i-th scene. We then perform the
second offline training at fixed step intervals, ensuring that
the policy periodically replays the information from the
whole dataset D. The training data are randomly sampled
from the D during the training process.

Specifically, given a state s from scene j and its in-
dices Ij in D, the corresponding optimal action is a∗ =
Aj(indx, indy, indψ). Consequently, the action distribution
specializes to a deterministic form for x, y, and ψ dimen-
sions. For the i-th action dimension, the probability of the
a∗[i] is 1, while the probabilities of other candidate actions
are set to 0. This yields a one-hot distribution in the action

Localization

ResNet

𝑥
𝑦
𝜓

Concat

P
o

se

E
n

co
d

e
r

∆𝑥

∆𝑦

∆𝜓

S
o

ftm
a
x

Logits

𝑌
 H

e
ad

𝜓
 H

e
ad

𝑋
 H

e
ad

M
L

P

 

Correction

Fig. 3: The Policy network. The network takes the global image
and the estimated picking pose as inputs, and outputs probability
distributions over ∆x, ∆y, and ∆ψ. The final pose adjustments are
sampled from these distributions to refine the picking pose.

space for each dimension, expressed as:

π∗(a[i] | s) =

{
1, if a[i] = a∗[i],

0, if a[i] ̸= a∗[i].
i = 0, 1, 2. (7)

Then, the cross-entropy loss can be calculated as:

Lθ = −
2∑
i=0

log πθ(a
∗[i] | s). (8)

Additionally, this offline training scheme can be applied
during a pre-training stage, where the policy network is
updated using data collected from prior real-world exper-
iments. The resulting pretrained policy offers a favorable
initialization for subsequent reinforcement learning, leading
to faster convergence and improved training stability.

Network Design: The architecture of our policy network
πθ is shown in Fig. 3. There are two inputs of the policy
network, the color image I and the estimated pose P e. The
output of the policy network is the adjustment pose ∆P ,
referred to as the action a ∈ A introduced earlier, adjusting
P e for precise picking. ResNet [49] is leveraged to extract



the image feature, and an MLP is used to encode the input
pose. Then, the image and pose features are concatenated
and fed into three separate output heads, which respectively
predict the translation adjustments along the x- and y-axes,
and the rotation adjustment around the z-axis. All the heads
adopt the same MLP architecture to predict logits, which are
transformed into probability distributions using the softmax
function. The adjustments ∆x, ∆y, and ∆ψ, sampled from
the predicted distributions, are represented collectively as the
action a = [∆x,∆y,∆ψ]. Finally, the final picking pose is
calculated as P pick = P e + a, which is executed by the
robotic arm to pick the cell plate precisely.

Reward Design: The reward is designed to evaluate the
similarity between the target pose P target and the final pose
P final after executing the actions. The similarity measure
separately accounts for translation and rotation errors. For
translation, the error etrans is defined as the Euclidean
distance between the translation in the final pose tfinal and
the target pose ttarget, which can be formulated as follows:

etrans = ∥tfinal − ttarget∥2. (9)

For rotation, since the task only requires planar alignment,
we only consider the yaw angle in the final and target
pose for error calculation. The cosine value of the angle
difference is used to measure the orientation similarity, and
the corresponding rotation error can be formulated as:

erot = 1− cos(ψfinal − ψtarget). (10)

The overall RL reward combines the translation and rotation
error, which can be calculated as:

r = exp(−(etrans + erot)). (11)

The exponential operation is applied to normalize the final
reward within the range [0, 1], where the reward increases
as the combined translation and rotation errors decrease. In
the real-world experiment, we first put the cell plate in the
target position and use the overhead camera to localize it,
getting the ttarget and ψtarget. After the robotic arm finishes
executing actions, we re-localize the cell plate to get the
tfinal and ψfinal and calculate the reward.

In summary, the Role-Model Reinforcement Learning
(RM-RL) framework integrates online and offline train-
ing through a role-model strategy that provides labeled
data for offline training. Unlike traditional RL with replay
buffers [12], which suffers from distribution mismatch [11],
[15], RM-RL constrains the policy network πθ to move
forward to the approximately optimal action among similar
initial states by supervised learning, significantly improving
sampling efficiency, adaptability, and stability.

D. Cell Plate Localization

To get the estimated pose P e of the cell plate from the real-
world observation, a general pipeline consisting of object
detection, segmentation, and pose estimation is leveraged.
For precisely localizing the cell plate, we use a global
camera instead of some physical labels, providing both the
environmental color image IRGB and depth image Idepth.

Cell Plate X-ARM 6

Cell Plate Shelf

Camera

Fig. 4: The real-world experimental setting. The setting includes
robotic arm (X-ARM 6), cell plate, cell plate shelf, and overhead
camera (Intel RealSense D435). The red stars represent the target
positions for the precise picking and placing tasks.

The Grounding Dino [50], a pretrained open-vocabulary
object detection method, is then utilized to localize the
bounding box of the plate (xmin, ymin, xmax, ymax) via the
prompt “black cell plate”. Furthermore, we adopt Segment
Anything Model (SAM) [51], a foundation model of object
segmentation, to predict the mask area M from the bounding
box of the target cell plate. The central pixel coordinate
is denoted as (u, v), where u = xmin+xmax

2 and v =
ymin+ymax

2 . Then, the depth value is the average depth within
the cell plate mask, which can be calculated as:

Z = mean(Idepth ⊙M), (12)

where ⊙ represents the Hadamard product. Then, the 3D
position pcamera = [X,Y, Z] of the cell plate in the camera
coordinate system can be formulated as:

X =
(u− cx) ·Z

fx
, Y =

(u− cy) ·Z
fy

, Z = Z, (13)

where (fx, fy) are the focal lengths in pixel units and
(cx, cy) is the principal point. After recovering the pcamera
in the camera coordinate system, its position in the world
coordinate system is obtained using the camera extrinsic
parameters. With rotation matrix R and translation vector
t, its position pworld in the world coordinate system is:

pworld = R ·pcamera + t. (14)

Then, the yaw angle ψ can be estimated from M by applying
Principal Component Analysis (PCA) [52], where the first
principal component indicates the major directions. Finally,
we use the combination of pworld and ψ as the pick pose of
the end-effector in the robotic arm to finish the picking task.

IV. EXPERIMENTS

The experiment consists of two main parts. First, we com-
pare the training performance of our framework with other
RL methods, reflecting the effectiveness of the proposed role-
model mechanism in improving data efficiency and train-
ing efficiency. Second, we evaluate the performance of the
selected methods in two real-world tasks, requiring precise



picking and placing. These real-world experiments further
demonstrate that the proposed method can be effectively
applied to practical robotic applications.

A. Hardware

For the hardware, as illustrated in Fig. 4, we use a 6-
DOF Ufactory X-ARM 6 with a bio gripper as our plat-
form to finish the designed experiments. RealSense D435
is mounted overhead to provide depth and RGB visual
perception, enabling the system to detect and localize the
cell plate in the workspace. Two target positions, marked
as red stars, are defined in the setup: one is located on the
table surface (where the cell plate is placed), and the other
is on the shelf slot. This configuration enables evaluation
of reinforcement learning–based manipulation policies under
real-world conditions, requiring accurate transfers between
different spatial levels. For the calibration of the overhead
RealSense camera, we first calibrate the camera on the
robotic wrist through chessboard calibration method [53] to
get the transformation matrix Twristworld . Then, the wrist camera
and the overhead camera localize the chessboard simultane-
ously, to get the transformation matrix T camerawrist . Finally, we
get the transformation matrix T cameraworld = T camerawrist ·Twristworld .

B. Baseline

To verify the effectiveness of the proposed method, we
compare the performance of the standard RL [22], standard
RL with replay buffer (RL + Replay Buffer) [12], the
proposed Role-Model Reinforcement Learning (RM-RL),
and pretrained RM-RL. To ensure fair comparisons, all
RL methods use the same policy network and are trained
with the same policy gradient-based method and training
configurations. Since the selected task is relatively simple,
we adopt policy gradient for optimization instead of more
advanced algorithms such as PPO or Actor-Critic. It is worth
noting that our proposed role-model strategy is orthogonal to
these algorithms and can be readily integrated into them in
future work. For the pretrained RL + MR, we collect about
200 samples, which are labeled through the proposed role-
model strategy, and the policy model is trained before the
beginning of real-world RL training. To ensure consistency,
all policy networks were trained and evaluated on the same
PC, equipped with an NVIDIA RTX 4060 GPU (6 GB).

C. Training Performance

We record the reward changes of the selected methods
during the RL training, and apply the Exponential Moving
Average algorithm to smooth the reward sequences, provid-
ing a clearer visualization of the performance trend. Since
each trial takes about 2-3 minutes to finish, one successful
training may take 7 hours. The results are shown in Fig. 5.
As we can see from the picture, the rewards of RM-RL
and Pretrained RM-RL increase quickly at the beginning and
finally converge to higher reward values than the Standard
RL and RL + Replay Buffer methods, demonstrating the
effectiveness of the proposed role-model labeling mechanism
in improving training efficiency. Compared with the reward

0 20 40 60 80 100 120 140
Step

0.90

0.92

0.94

0.96

0.98

1.00

R
ew

ar
d

Standard RL
RL + Replay Buffer
RM-RL
Pretrained RM-RL

Fig. 5: The results of reward curves. The reward curves record the
reward changes during real-world RL training from the selected
baselines, Standard RL, standard RL with replay buffer (RL +
Replay Buffer), the proposed Role-Model Reinforcement Learning
(RM-RL), and pretrained RM-RL.

Methods T 10
τ Average Reward

Standard RL [22] 45 0.948 (0.029)
RL + Replay Buffer [12] 36 0.953 (0.031)

RM-RL 35 0.956 (0.027)
Pretrained RM-RL 30 0.969 (0.023)

TABLE I: Quantitative experimental results of different RL methods
evaluated by T 10

τ and average reward.

curves of other RL methods without pretraining, the reward
curve of the pretrained RM-RL shows a more consistent and
stable improvement, demonstrating that reusing the previous
role-model-labeled training data as a pretraining stage is
effective to improve the training stability and efficiency.

For quantitative analysis, we use two metrics to evaluate
the training performance. Similar to the metric Jeff. [21],
we record the training step index at which the learned policy
achieves a predefined reward threshold for the tenth occur-
rence. The calculation of the metric is shown as follows:

T 10
τ = min

{
t ∈ N

∣∣∣∣∣
t∑
i=1

1{ri>τ} = 10

}
, (15)

where τ is a predefined reward threshold, ri is the reward
in step i, and 1{ri>τ} is the indicator function, equal to 1 if
ri > τ and 0 otherwise. This metric reflects not only whether
the policy can eventually reach the desired reward level, but
also how rapidly and consistently it does so across training.
By requiring the threshold to be reached multiple times,
the metric mitigates the influence of outlier fluctuations
and provides a more robust measure of data efficiency and
training stability. The second evaluation metric is the average
reward, defined as the mean of the rewards obtained over
the training steps. This metric reflects the overall training
performance of the selected training methods.

Table I summarizes the quantitative experimental results.
In particular, Pretrained RM-RL achieves the best results,
requiring only 30 steps to reach the threshold for the 10th
time (a 33% reduction from Standard RL) and attaining the
highest average reward of 0.969 with the lowest variance,



Methods Average Reward etrans/mm erot/◦

Standard RL 0.964 (0.024) 3.6 (0.27) 0.58 (0.49)
RL + Replay Buffer 0.944 (0.030) 5.8 (0.33) 1.01 (0.43)

RM-RL 0.970 (0.025) 3.0 (0.30) 0.89 (0.38)
Pretrained RM-RL 0.978 (0.012) 2.1 (0.12) 0.60 (0.45)

TABLE II: Performance comparison of different reinforcement
learning strategies in real-world robotic picking and placing tasks,
evaluated by average reward, position error, and rotation error.

indicating faster convergence and more stable learning. Al-
though the RL with Relay Buffer demonstrates competitive
performance, it exhibits the largest standard deviation in
experimental results, indicating instability in training.

D. Real-World Performance

To evaluate the pick and place performance in the real-
world environment, we conduct two experiments. The first
experiment follows the training process, putting one cell
plate into the given box of a similar size. We provide 10
random initial positions of the cell plate. The robot needs
to pick the cell plate from the initial position and place
it in the target position. We record the average reward,
translation error etrans, and rotation error erot in Table II of
the compared methods for evaluation. From the experimental
results, the Pretrained RM-RL achieves the highest average
reward (0.978). Its translational error is reduced to 2.1 mm,
representing a 42% improvement over Standard RL (3.6 mm)
and a 64% reduction compared with RL + Replay Buffer
(5.8 mm). For rotational accuracy, Pretrained RM-RL (0.60°)
is nearly identical to Standard RL (0.58°) and 41% better
than RL + Replay (1.01°). Overall, these results demonstrate
that pretraining using role-model-labeled data significantly
enhances real-world pick-and-place performance.

The other experiment is placing a cell plate onto the
cell plate shelf, given random initial states. The aim of
this experiment is to evaluate whether the predicted pose
adjustment is also effective for other tasks that also need
precise operations, and the influence of the small errors
on these RL-based methods. The robotic arm autonomously
picks the cell plate with the localization information and the
adjustment pose from RL. A fixed trajectory is designed to
guarantee the cell plate can be put on the cell plate shelf
with a proper grasping pose. We evaluate the performance
of different RL-based methods by measuring the success
rate over ten trials. The experiment results are summarized
in Table III. From the experimental results, the Standard
RL achieves a success rate of 50%, while RL + Replay
performs worse with only 40%, demonstrating the replay
with distribution transit error may fail the precise tasks.
RM-RL also shows unsatisfactory results, achieving only
a 70% success rate, despite presenting results comparable
to Pretrained RL + MR in the previous experiment. The
Pretrained RM-RL succeeds in all trials, demonstrating the
effectiveness of the proposed receipt with pretraining in
enhancing the robot’s capability for precise tasks.

Methods Successful Rate

Standard RL 50%
RL + Replay Buffer 40%

RM-RL (Ours) 70%
Pretrained RM-RL (Ours) 100%

TABLE III: Success rates of different reinforcement learning strate-
gies in real-world picking a cell plate on a shelf.

V. SUMMARY AND FUTURE WORK

This paper addresses the challenge of achieving pre-
cise robot manipulation in real-world applications, requir-
ing millimeter-level accuracy. Online reinforcement learning
(RL) can improve safety and accuracy but requires exten-
sive sampling in real-world environments, which is often
impractical. Offline RL reduces the need for real-world data
collection but is hindered by the difficulty of acquiring high-
quality datasets and the distribution shift between offline data
and real-world execution. To overcome these limitations, we
proposed Role-Model Reinforcement Learning (RM-RL), a
framework that integrates online and offline training. The
role-model strategy labels online samples with approximately
optimal actions, creating reliable datasets for offline training
and policy pretraining. This approach enhances both data
and training efficiency. Experimental results demonstrate that
RM-RL achieves faster convergence, more stable training,
and notable accuracy improvements (53% in translation
and 20% in rotation) while consistently accomplishing a
challenging task: placing a cell plate onto a shelf, which
competing RL algorithms fail to perform reliably.

In future work, we will extend RM-RL to more com-
plex and long-horizon robotic tasks that demand sequen-
tial decision-making, generalization capability, and sustained
precision across multiple stages. Such scenarios will provide
a rigorous benchmark to evaluate the scalability of our
framework and further establish its potential as a robust, data-
efficient solution for real-world robotic applications.

VI. ACKNOWLEDGMENTS

This work is supported by a Start-up Grant from Nanyang
Technological University and jointly funded by the Singapore
Ministry of Education (MOE) under a Tier-1 research grant.

REFERENCES

[1] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart,
S. Welker, A. Wahid, et al., “Rt-2: Vision-language-action models
transfer web knowledge to robotic control,” in Conference on Robot
Learning. PMLR, 2023, pp. 2165–2183.

[2] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn,
N. Fusai, L. Groom, K. Hausman, B. Ichter, et al., “π0 : A vision-
language-action flow model for general robot control,” arXiv preprint
arXiv:2410.24164, 2024.

[3] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna,
S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi, et al., “Open-
vla: An open-source vision-language-action model,” arXiv preprint
arXiv:2406.09246, 2024.

[4] Z. Lan, Y. Jiang, R. Wang, X. Xie, R. Zhang, Y. Zhu, P. Li, T. Yang,
T. Chen, H. Gao, et al., “Autobio: A simulation and benchmark
for robotic automation in digital biology laboratory,” arXiv preprint
arXiv:2505.14030, 2025.

[5] S. Li, Y. Huang, C. Guo, T. Wu, J. Zhang, L. Zhang, and W. Ding,
“Chemistry3d: Robotic interaction benchmark for chemistry experi-
ments,” arXiv preprint arXiv:2406.08160, 2024.



[6] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, pp. 1–35, 2017.

[7] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual review of
control, robotics, and autonomous systems, vol. 3, no. 1, pp. 297–
330, 2020.

[8] H. Geng, F. Wang, S. Wei, Y. Li, B. Wang, B. An, C. T. Cheng, H. Lou,
P. Li, Y.-J. Wang, et al., “Roboverse: Towards a unified platform,
dataset and benchmark for scalable and generalizable robot learning,”
arXiv preprint arXiv:2504.18904, 2025.

[9] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on
intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[10] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan,
R. Singh, Y. Guo, H. Mazhar, A. Mandlekar, B. Babich, G. State,
M. Hutter, and A. Garg, “Orbit: A unified simulation framework for
interactive robot learning environments,” IEEE Robotics and Automa-
tion Letters, vol. 8, no. 6, pp. 3740–3747, 2023.

[11] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[14] M. Rowland, R. Dadashi, S. Kumar, R. Munos, M. G. Bellemare,
and W. Dabney, “Statistics and samples in distributional reinforcement
learning,” in International Conference on Machine Learning. PMLR,
2019, pp. 5528–5536.

[15] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning. PMLR, 2019, pp. 2052–2062.

[16] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, “Provably good
batch off-policy reinforcement learning without great exploration,”
Advances in neural information processing systems, vol. 33, pp. 1264–
1274, 2020.

[17] A. Kumar, J. Hong, A. Singh, and S. Levine, “Should i run offline
reinforcement learning or behavioral cloning?” in International
Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=AP1MKT37rJ

[18] I. H. Sarker, “Machine learning: Algorithms, real-world applications
and research directions,” SN computer science, vol. 2, no. 3, p. 160,
2021.

[19] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming. John Wiley & Sons, 2014.

[20] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 38,
no. 2, pp. 156–172, 2008.

[21] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of
real-world reinforcement learning,” arXiv preprint arXiv:1904.12901,
2019.

[22] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[23] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PmLR, 2016, pp. 1928–1937.

[24] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement
learning with continuous action in practice,” in 2012 American control
conference (ACC). IEEE, 2012, pp. 2177–2182.

[25] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” Advances in neural in-
formation processing systems, vol. 33, pp. 1179–1191, 2020.

[26] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” arXiv preprint arXiv:2110.06169, 2021.

[27] G. Zhou, L. Ke, S. Srinivasa, A. Gupta, A. Rajeswaran, and V. Kumar,
“Real world offline reinforcement learning with realistic data source,”
arXiv preprint arXiv:2210.06479, 2022.

[28] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The

robot learning benchmark & learning environment,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[29] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl:
Datasets for deep data-driven reinforcement learning,” arXiv preprint
arXiv:2004.07219, 2020.

[30] R. Rafailov, K. Hatch, A. Singh, L. Smith, A. Kumar, I. Kostrikov,
P. Hansen-Estruch, V. Kolev, P. Ball, J. Wu, et al., “D5rl: Diverse
datasets for data-driven deep reinforcement learning,” arXiv preprint
arXiv:2408.08441, 2024.

[31] H. R. Walke, K. Black, T. Z. Zhao, Q. Vuong, C. Zheng, P. Hansen-
Estruch, A. W. He, V. Myers, M. J. Kim, M. Du, et al., “Bridgedata
v2: A dataset for robot learning at scale,” in Conference on Robot
Learning. PMLR, 2023, pp. 1723–1736.

[32] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[33] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and
K. Sreenath, “Real-world humanoid locomotion with reinforcement
learning,” Science Robotics, vol. 9, no. 89, p. eadi9579, 2024.

[34] L. Wijayathunga, A. Rassau, and D. Chai, “Challenges and solutions
for autonomous ground robot scene understanding and navigation
in unstructured outdoor environments: A review,” Applied Sciences,
vol. 13, no. 17, p. 9877, 2023.

[35] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dubé, “Robot nav-
igation in crowded environments using deep reinforcement learning,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2020, pp. 5671–5677.

[36] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng,
Y. Weng, J. Chen, et al., “Unidexgrasp: Universal robotic dexterous
grasping via learning diverse proposal generation and goal-conditioned
policy,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 4737–4746.

[37] W. Wan, H. Geng, Y. Liu, Z. Shan, Y. Yang, L. Yi, and H. Wang,
“Unidexgrasp++: Improving dexterous grasping policy learning via
geometry-aware curriculum and iterative generalist-specialist learn-
ing,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2023, pp. 3891–3902.

[38] Y. Geng, B. An, H. Geng, Y. Chen, Y. Yang, and H. Dong, “Rlafford:
End-to-end affordance learning for robotic manipulation,” in 2023
IEEE International conference on robotics and automation (ICRA).
IEEE, 2023, pp. 5880–5886.

[39] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in
deep reinforcement learning for robotics: a survey,” in 2020 IEEE
symposium series on computational intelligence (SSCI). IEEE, 2020,
pp. 737–744.

[40] F. Muratore, F. Ramos, G. Turk, W. Yu, M. Gienger, and J. Peters,
“Robot learning from randomized simulations: A review,” Frontiers in
Robotics and AI, vol. 9, p. 799893, 2022.

[41] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[42] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to con-
trol: Learning behaviors by latent imagination,” arXiv preprint
arXiv:1912.01603, 2019.

[43] A. Nair, A. Gupta, M. Dalal, and S. Levine, “Awac: Accelerating
online reinforcement learning with offline datasets,” arXiv preprint
arXiv:2006.09359, 2020.

[44] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 international conference on robotics and
automation (ICRA). IEEE, 2019, pp. 6023–6029.

[45] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[46] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, part
C (applications and reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[47] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

https://openreview.net/forum?id=AP1MKT37rJ


[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[50] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, Q. Jiang, C. Li,
J. Yang, H. Su, et al., “Grounding dino: Marrying dino with grounded
pre-training for open-set object detection,” in European conference on
computer vision. Springer, 2024, pp. 38–55.

[51] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,

T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Gir-
shick, “Segment anything,” arXiv:2304.02643, 2023.

[52] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp.
433–459, 2010.

[53] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330–1334, 2002.


	INTRODUCTION
	Related Works
	Reinforcement Learning
	 Reinforcement Learning for Real-world Robotic Tasks

	Methodology
	Problem Definition
	Overall Framework
	Role-Model Reinforcement Learning
	Role-Model Online Labeling
	Hybrid Online-Offline RL Training

	Cell Plate Localization

	Experiments
	Hardware
	Baseline
	Training Performance
	Real-World Performance

	Summary and Future Work
	Acknowledgments
	References

